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Abstract. Topical annotation of documents with keyphrases is a proven method 

for revealing the subject of scientific and research documents. However, scien-

tific documents that are manually annotated with keyphrases are in the minor-

ity. This paper describes a machine learning-based automatic keyphrase annota-

tion method for scientific documents, which utilizes Wikipedia as a thesaurus 

for candidate selection from documents’ content and deploys genetic algorithms 

to learn a model for ranking and filtering the most probable keyphrases. Re-

ported experimental results show that the performance of our method, evaluated 

in terms of inter-consistency with human annotators, is on a par with that 

achieved by humans and outperforms rival supervised methods. 

Keywords: text mining, scientific digital libraries, subject metadata, keyphrase 

annotation, keyphrase indexing, Wikipedia, genetic algorithms. 

1 Introduction 

Automatic keyphrase annotation methods for scientific documents can be divided into 

two main categories:  

1. Keyphrase extraction: keyphrases are picked from a set of candidate phrases ex-

tracted from the content of the document itself and are ranked and filtered based on 

their various statistical and/or semantical features, such as frequency, position, length, 

and coherence. The ranking function could be either (a) unsupervised, where it is 

heuristically defined by manual analysis of sample documents and encoding general 

properties of typical keyphrases, e.g., see [1, 2]; or (b) supervised, where it is auto-

matically derived by a general-purpose ML algorithm from a training dataset, e.g., see 

[3-6]. Keyphrase extraction approach has two main weaknesses: 1) it is prone to gen-

erating phrases composed of a set or sequence of words that occur contiguously 

within the document and have statistically significant properties, such as high fre-

quency (a.k.a statistically motivated phrases), but are ill-formed, grammatically 

wrong, or meaningless; 2) it limits the scope of potential candidates to the phrases 

explicitly appearing in the document. 

2. Keyphrase assignment: keyphrases are picked from controlled vocabularies, such 

as taxonomies, thesauri, and subject heading systems (e.g., LCSH, MeSH, 

AGROVOC, Eurovoc) and are not confined to the phrases appearing in the document. 

In this approach, keyphrase annotation is treated as a multi-label text classification 



problem and general-purpose ML algorithms (e.g., SVM, NB) are utilized to learn a 

model for each term in the controlled vocabulary from a set of manually annotated 

training documents. The learnt models are then applied to test documents for classifi-

cation resulting in a set of high-probability classes (i.e., keyphrases) per document, 

e.g., see [7, 8]. Using this approach, assigned keyphrases are well formed, grammati-

cally correct, and not limited to those appearing in the document. Therefore, it can 

cope with cases where a concept is discussed but not explicitly mentioned in the 

document. However, depending on the characteristics of the target domain, this ap-

proach may suffer one or more drawbacks common among supervised ML-based 

approaches to information retrieval in general, including lack of high quality and/or 

quantity training data, data sparsity and/or skewed distribution, and concept drift. 

Medelyan  and Witten [9, 10] proposed a hybrid approach as an intermediate be-

tween keyphrase extraction and keyphrase assignment which they have called key-

phrase indexing. In this approach, candidate phrases are limited to a set of descriptors, 

i.e., preferred and commonly used terms for the represented concepts in a domain-

specific thesaurus, which either themselves or their synonyms/alternative lexical 

forms (a.k.a non-descriptors, encoded in form of semantic relations in the thesaurus) 

occur in the document. This method of candidate generation eliminates the two 

above-mentioned weaknesses of keyphrase extraction approach as the generated can-

didate phrases are well-formed, semantically rich, and not restricted to those occur-

ring in the document explicitly. Similar to keyphrase extraction, in this approach an 

unsupervised or supervised ranking function is deployed to model the general proper-

ties of keyphrases in order to rank and filter the most probable ones. This method of 

rank and filtering requires either no or limited training data, depending on the type of 

ranking function deployed. This is in contrast to keyphrase assignment approach 

which requires a set of annotated documents per descriptor. The main weakness of the 

keyphrase indexing approach is that it assumes there exists a comprehensive domain-

specific thesaurus for the target domain, which is not always a feasible assumption. 

This weak point has been addressed by automatic construction of a universal thesau-

rus from Wikipedia [11, 12] and replacing the domain-specific thesauri with the the-

saurus derived from Wikipedia [13, 14]. 

In this work, we aim to extend the keyphrase indexing approach, described above, 

by: (a) introducing a new set of features for the candidate phrases derived from 

Wikipedia, which enhances the performance of rank and filtering process, and (b) 

introducing a new supervised ranking function based on Genetic Algorithms (GA) 

which eliminates the need for manual feature selection and outperforms general-

purpose ML algorithms used for keyphrase annotation. 

2 Candidate Generation 

Following the work of  Medelyan and Witten [13, 14], we utilize an open-source 

toolkit called Wikipedia-Miner [15] for candidate generation. We use the topic detec-

tion functionality of the Wikipedia-Miner to extract all the Wikipedia topics (i.e., 

Wikipedia articles) whose descriptor or non-descriptor lexical representations occur in 

the document, and use the descriptors of the extracted topics as candidate phrases for 

the document. We have devised a set of twenty statistical, positional, and semantical 



features for candidate topics/phrases to capture and reflect various properties of those 

candidates which have the highest keyphraseness probability: 

1. Term Frequency (TF): the occurrence frequency of the candidate phrase (i.e., 

descriptor of the extracted Wikipedia topic) and its synonyms and alternative lexical 

forms/near-synonyms (i.e., non-descriptors of the extracted Wikipedia topic) in the 

document. The TF values are normalized by dividing them by the highest TF value in 

the document. 

2. First Occurrence: the distance between the start of the document and the first 

occurrence of the candidate topic, measured in terms of the number of characters and 

normalized by the length of the document.  

3. Last Occurrence: the distance between the end of the document and the last occur-

rence of the candidate topic, measured in terms of the number of characters and nor-

malized by the length of the document.  

4. Occurrence Spread: the distance between the first and last occurrences of the 

candidate topic, measured in terms of the number of characters and normalized by the 

length of the document. This feature reflects the observation that candidates which are 

more evenly spread within the document have a higher keyphraseness probability.  

5. Length: the number of words in the candidate phrase, i.e., the descriptor of the 

candidate topic. This feature reflects the general observation that multi-word phrases 

have a higher keyphraseness probability as they tend to be more specific and less 

ambiguous. The keyphrase annotation studies which adopt this feature (e.g., see [10, 

13, 14, 16, 17]) compute the length of a candidate phrase by simply counting its num-

ber of words or characters. However, our approach is to: (a) split the hyphenated 

words, (b) count the stopwords as 0.5 and non-stopwords as 1.0, (c) normalize the 

count value by dividing it by 10.0, (d) eliminate candidates which either have a nor-

malized value greater than 1.0 or those which do not contain any letters (e.g., num-

bers, numerical dates).  

6. Lexical Diversity: the descriptor and non-descriptors of a given topic could appear 

in a document in various lexical forms. We calculate the lexical diversity by (a) case-

folding and stemming all the lexical forms of the candidate topic which appear in the 

document, using an improved version of Porter stemmer called the English (Porter2) 

stemming algorithm [18]; (b) counting the number of unique stems minus one, so that 

the lexical diversity value would be zero if there is only one unique stem. Lexical 

diversity values are normalized by dividing them by the highest possible lexical di-

versity value between all topics in Wikipedia. As explained in Section 3, this feature 

is only used in the supervised ranking function to balance and complement the lexical 

unity feature. 

7. Lexical Unity: inverse of lexical diversity calculated as: 1.0 – lexical diversity. Our 

assumption is that the candidates with higher lexical unity values would have a higher 

keyphraseness probability. 

8. Average Link Probability:  the average value of the link probabilities of all the 

candidate topic’s lexical forms which appear in the document. The link probability of 

a lexical form is the ratio of the number of times it occurs in Wikipedia articles as a 

hyperlink to the number of times it occurs as plain text. 

9. Max Link Probability: the maximum value of all link probabilities of the lexical 

forms for a candidate topic which appear in the document. Both the average and max 



link probability features are based on the assumption that candidate topics whose 

descriptor and/or non-descriptor lexical forms appearing in the document have a high 

probability of being used as a hyperlink in Wikipedia articles, also would have a high 

keyphraseness probability. 

10. Average Disambiguation Confidence: in many cases a term from the document 

corresponds to multiple topics in Wikipedia and hence needs to be disambiguated. For 

example, the term “Java” could refer to various topics, such as “Java programming 

language”, “Java Island”, etc. As described in [19], the Wikipedia-Miner uses a novel 

ML-based approach for word-sense disambiguation which yields an F-measure of 

97%. We have set the disambiguator to perform a strict disambiguation, i.e., each 

term in the document can only correspond to a single topic which has the highest 

probabilistic confidence. The value of the average disambiguation confidence feature 

for a candidate topic is calculated by averaging the disambiguation confidence values 

of its descriptor and non-descriptor lexical forms that appear in the document. 

11. Max Disambiguation Confidence: the maximum disambiguation confidence 

value among the lexical forms of a candidate topic which appear in the document. 

Both the average and max disambiguation confidence features are incorporated into 

the ranking function to reduce the likelihood of candidate topics with low disam-

biguation confidence values being ranked as top keyphrases.  

12. Link-Based Relatedness to Other Topics: the Wikipedia-Miner measures the 

semantic relatedness between topics using a new approach called Wikipedia Link-

based Measure (WLM). In this approach the relatedness between two Wikipedia arti-

cles/topics is measured according to the number of Wikipedia topics which dis-

cuss/mention and have hyperlinks to both the two topics being compared (see [20] for 

details). The link-based relatedness to other topics feature value of a candidate is 

calculated by measuring and averaging its relatedness to all the other candidates in the 

document. 

13. Link-Based Relatedness to Context: the only difference between this feature 

and the link-based relatedness to other topics is that the relatedness of the candidate 

topic is only measured against those of other candidate topics in the document which 

are unambiguous, i.e., their descriptor and non-descriptor lexical forms occurring in 

the document have only one valid sense. Both the link-based relatedness to context 

and link-based relatedness to other topics features are designed to increase the likeli-

hood of those candidate topics with high semantic relevance to other topics in the 

document being picked as top keyphrases. However, the former only takes into ac-

count the unambiguous topics in the document and therefore has high accuracy but 

low coverage, whereas the latter also includes the ambiguous topics which have been 

disambiguated based on their surrounding unambiguous context (i.e., unambiguous 

topics in the document) and therefore has lower accuracy but conclusive coverage. 

14. Category-Based Relatedness to Other Topics: Our study shows that as of July 

2011, 95% of Wikipedia articles are classified and on average each classified article 

belongs to 3.82 categories. When a candidate topic is classified, we can utilize its 

categorization data to measure its semantic relatedness to other candidates in the 

document. We measure the category-based relatedness of two Wikipedia topics as: 
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where D is the maximum depth of the taxonomy, i.e., 16 in case of the Wikipedia 

dump used in this work. The distance function returns the length of the shortest path 

between topic1 and topic2 in terms of the number of nodes along the path. The term 

2D – 3 gives the longest possible path distance between two topics in the taxonomy, 

which is used as the normalization factor, i.e., 2 × 16 – 3 = 29. The shortest possible 

distance between two nodes/topics is 1 (in case of siblings) and the longest is 2D – 3. 

Therefore subtracting one from the outcome of the distance function results in a high-

est possible relatedness value of 1.0, e.g., 1 – (1 – 1) / (2 × 16 – 3) = 1.0, and a lowest 

possible relatedness value of 0.03, e.g., 1 – (29 – 1) / (2 × 16 – 3) = 0.03. Changing the 

divisor from 2D – 3 to 2D – 4 reduces the lowest possible relatedness value to zero, 

however we have adopted the former and instead assign a zero value to relatedness 

when either topic1 or topic2 are amongst the 5% of Wikipedia topics which are not 

classified. The value for category-based relatedness to other topics for each candidate 

is calculated by measuring and averaging its category-based relatedness to all the 

other candidates in the document.  

15. Generality: the depth of the topic in the taxonomy measured as its distance from 

the root category in Wikipedia, normalized by dividing it by the maximum possible 

depth, and inversed by deducting the normalized value from 1.0. It ranges between 

0.0 for the topics farthest from the root and unclassified ones, and 1.0 for the root.  

16. Speciality: inverse of generality calculated as: 1.0 – generality.  This feature is 

only used in the supervised ranking function (see Section 3) to balance and comple-

ment the generality feature. 

17. Distinct Links Count: total number of distinct Wikipedia topics which are linked 

in/out to/from the candidate topic, normalized by dividing it by the maximum possible 

distinct links count value in Wikipedia. 

18. Links Out Ratio: total number of distinct Wikipedia topics which are linked out 

from the candidate topic, divided by the distinct links count value of the candidate. 

Our preliminary experiments show that the candidates with a higher ratio of links out 

to links in, have a higher keyphraseness probability. 

19. Links In Ratio: total number of distinct Wikipedia topics which are linked in to 

the candidate topic divided by the distinct links count value of the candidate. This 

feature is only used in the supervised ranking function (see Section 3) to balance and 

complement the links out ratio. 

20. Translations Count: number of languages that the candidate topic is translated to 

in the Wikipedia, normalized by dividing it by the maximum possible translations 

count value in Wikipedia. 

3 Rank and Filtering 

As discussed in Section 1, the function applied to rank all the candidates and filter out 

those with highest keyphraseness probabilities could be either supervised or unsuper-

vised. Since all the features defined in Section 2 are normalized to range from 0.0 to 

1.0, a simple unsupervised function could be defined as: 
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which computes the sum of all feature values of a given candidate topic, topicj, as its 

keyphraseness score. The feature set, F, does not contain the inverse features f6, f16, 

and f19 as they are only designed to be used in the supervised function. The main ad-

vantage of this unsupervised approach is that it does not involve a training process 

and, therefore, does not require any manually annotated documents for learning a rank 

and filtering function from. Hence, it may be readily applied to document collections 

across all domains with minimum effort. However, this approach forces a number of 

naive assumptions on the general properties of keyphrases in research documents, 

which negatively impact the accuracy performance of the rank and filtering function: 

─ All the summed features carry the same weight in respect to their capacity for 

measuring the keyphraseness probability of a candidate. This is a virtually impos-

sible assumption as shown previously (e.g., see [14]).  

─ All the features correspond and contribute to the keyphraseness probability of can-

didates linearly. This assumption does not hold neither intuitively nor empirically 

[14]. For example, in case of positional features such as first occurrence (f2) and 

last occurrence (f3), only extreme values (>~0.9) should have a significant effect on 

the overall keyphraseness scores of candidates. Therefore, an exponential corre-

spondence between the values of these features and the scores of candidates better 

captures the behavior of these features. 

The above issues may be addressed to a large degree by adding a weight, wi, and a 

degree parameter, di, to each feature in equation 3: 
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In an unsupervised setting, knowledge engineers would require to heuristically find 

and assign the (near) optimum values to these two parameters via examination of a 

collection of manually annotated documents. However, the optimum values for these 

parameters could change from one domain or dataset to another. Hence, in order to 

achieve the best performance, the learning process needs to be repeated whenever the 

underlying nature of the dataset changes. In our supervised approach we automate this 

learning process by utilizing genetic algorithms to learn the optimum values for the 

weight and degree parameters from a set of manually annotated documents. In this 

approach, the learning process consists of the following steps: 

1.  Generating an initial population consisting of a set of ranking functions with ran-

dom weight and degree parameter values from within a predefined range.  

2. The fitness of each individual ranking function in the population is evaluated via 

applying it to a set of training documents to rank and filter their most probable 

keyphrases, and comparing the resulted top n keyphrases per document with those 

assigned by human annotators.  

3. Based on their fitness, a number of individuals in the current population are sto-

chastically selected, crossed, and mutated to form a new population for the next 

generation.  

4. Steps 2 and 3 are repeated successively until one of the following termination con-

ditions is reached: 



(a) A ranking function with the highest possible fitness is found, i.e., for all the 

documents in the training set, all the top n keyphrases resulted from applying 

the ranking function match those assigned by human annotators. In practice we 

use the inter-indexer consistency measure to evaluate the fitness of individual 

ranking functions (see Section 4 for details of the evaluation measure used).  

(b) The threshold on the number of generations is invoked. We have defined a 

greedy thresholding scheme which initially allows a predefined number of gen-

erations specified by the threshold variable to pass, and from that point on it 

counts the number of generations that pass without any improvement in the fit-

ness of their fittest individual compared to that of the previous generation. Each 

time there is an improvement, the counter is reset to zero. The iteration process 

terminates when the number of generations passed without improvement equals 

half the total number of generations passed. It should be noted that since we use 

elitism the fitness of the best individual in each generation is guaranteed to be 

equal or higher than the fitness of the best individual in the previous generation, 

and the proposed thresholding mechanism would not work effectively without 

elitism. 

5. The best individuals of all the generations built since the last generation with an 

improvement up to the last one before termination, are stored to be used for rank 

and filtering high probability keyphrases in unseen documents. 

The degree parameters are float numbers with values between 0.0 and 2.0, allowing 

each feature, fi, to be scaled logarithmically (0.0<di<1.0), linearly (di=1.0), exponen-

tially (1.0<di≤2.0), or to become neutralized (di =0.0). The weight parameters have 

the same type and range as the degree parameters, allowing the weight of each fea-

ture, i.e., the magnitude of its impact on the total keyphraseness score of a given can-

didate, to become nil (wi=0.0), a fraction of neutral (0.0<wi<1.0), neutral (wi=1.0), or 

up to twice bigger than neutral (1.0<wi≤2.0). The defined ranges allow the genetic 

algorithm to render the features that are too noisy or counterproductive redundant via 

setting their degree to zero, or setting their weight to zero (or close to it). This in ef-

fect automates the feature selection process. 

In the unsupervised setting, the universal ranking function defined in Equation 2 is 

applied to unseen documents and the top n keyphrases with the highest keyphraseness 

probability are filtered out. In the supervised setting however, the data stored at the 

fifth step of the learning process is used to apply an individual or a set of ranking 

functions defined in Equation 3, whose weight and degree parameters are adjusted 

according to the general properties of keyphrases in the target dataset. We have de-

veloped and evaluated two different methods to this: 

─ Last best: in this method, simply the individual function with the highest fitness 

from the last generation before termination is applied to the documents to rank and 

filter their top n keyphrases.  

─ Unique bests: in this method, the final score of each candidate keyphrase in a 

given document is calculated as the sum of its scores from all the unique individual 

ranking functions created during the learning process, which have yielded the best 

fitness value (achieved before termination) with different weight and degree value 

sets. This ensembled scoring method takes into account all the variations of the 

weight and degree value sets which have yielded the final best fitness value. 



4 Experimental Results & Evaluation 

For evaluating the performance of our keyphrase annotation method, we have used a 

dataset called wiki-20 [21] created by Medelyan and Witten [13, 14]. The wiki-20 

collection consists of 20 Computer Science (CS) related technical research reports, 

each manually annotated by fifteen different human teams independently. Each team 

consisted of two senior undergraduate and/or graduate CS students. The teams were 

instructed to assign about five keyphrases to each document from a controlled vo-

cabulary of over two million terms which served as article titles (i.e. topic descriptors) 

in Wikipedia at the time the dataset was compiled. We follow the evaluation approach 

from [13, 14] and use the inter-indexer consistency  formula  proposed by Rolling 

[22] to measure the quality of keyphrases assigned to the test documents by our 

method via comparing them with those assigned by each team of human annotators: 
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where A and B represent the two annotators whose inter-consistency is being meas-

ured, a and b are the number of terms assigned by each annotator, and c is the number 

of terms they have in common. The overall inter-indexer consistency score of an an-

notator is calculated by first measuring and averaging its inter-consistency with all the 

other annotators per document, and then averaging the results over all the documents. 

This measure is also used in the second step of the learning process described in Sec-

tion 3, to evaluate the fitness of individual ranking functions in a given population. 

In order to achieve a thorough evaluation of the performance of our method, we have 

conducted three rounds of evaluation, each consisting of three sets of experiments: 

(ExpA) 2-fold cross-validation, (ExpB) 4-fold cross-validation, and (ExpC) 20-fold 

cross-validation, which corresponds to Leave-One-Out Cross-Validation (LOOCV). 

The data and results of all the experiments are available for download 

(http://www.skynet.ie/~arash/zip/KA_Wiki20_WM1.2-R233_ECJ20.zip).  

Table 1 presents the results of the three rounds of evaluation. In the first round, we 

set the threshold to 400 (population-size multiplied by 10) which forces the GA to go 

through a minimum of 800 generations before terminating the learning process. In the 

second round, we reduced the threshold value from 400 to 200 to speed up the learn-

ing process and measure the effect it has on the quality of results. In the third round 

however, we doubled the threshold from 400 to 800 to examine if having a larger 

threshold and lengthier learning process would result in an improved overall perform-

ance. The results indicate underfitting in case of the second round and overfitting in 

case of the third round, both resulting in an underperforming model. Table 2 com-

pares the performance of our machine annotator on the wiki-20 dataset with human 

annotators, a baseline machine annotator based on TFIDF, two un-supervised ma-

chine annotators: the work of Grineva et al. [1], and CKE [2], and two supervised 

machine annotators: KEA++ (KEA-5.0) [13, 17] and Maui [14]. 



Table 1. results of the three rounds of evaluation. 
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Table 2. Performance comparison with human annotators and rival machine annotators. 

Min. Avg. Max.

TFIDF (baseline) n/a - unsupervised 5 5.7 8.3 14.7

KEA++ (KEA-5.0) Naïve Bayes 5 15.5 22.6 27.3

Grineva et al. n/a - unsupervised 5 18.2 27.3 33.0

Maui Naïve Bayes (all 14 features) 5 22.6 29.1 33.8

Maui Bagging decision trees (all 14 features) 5 25.4 30.1 38.0

Human annotators (gold 

standard)
n/a - senior CS students

Varied, with an 

average of 5.7 per 

document

21.4 30.5 37.1

CKE n/a - unsupervised 5 22.7 30.6 38.3

Current work n/a - unsupervised 5 19.1 30.7 37.9

Maui Bagging decision trees (13 best features) 5 23.6 31.6 37.9

Current work (LOOCV) GA, threshold=800, unique bests method 5 12.3 32.8 58.1

Current work (LOOCV) GA, threshold=200, unique bests method 5 13.9 32.9 56.7

Current work (LOOCV) GA, threshold=400, unique bests method 5 14.0 33.5 58.1

Method

Avg. inter 

consistency 
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5 Conclusion 

In this paper, we introduced an unsupervised and a supervised GA-based keyphrase 

annotation method for scientific literature utilizing a large number of features derived 

from Wikipedia. We evaluated the performance of both methods in terms of the con-

sistency of their resulted keyphrases for a collection of test documents with those 

assigned by human annotators. The results of the three rounds of evaluation show that 

both methods outperform their rivals and yield a performance above the average per-

formance of human annotators in terms of overall inter-indexer consistency. 
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