Automatically assigned DDC number:
Manually assigned DDC number: 00631
Title: Parallel Classification by Feature Partitioning
Author:
Subject: Huseyin Simit¸ci H. Altay Guvenir Parallel Classification by Feature Partitioning
Description: This work presents a parallel method for learning from examples using parallel feature partitioning (PFP). Feature partitioning (FP) is an inductive, incremental and supervised learning method proposed by S¸irin and Guvenir [1]. PFP assigns feature dimensions to separate nodes. Learning in PFP is accomplished by storing the objects separately in each feature dimension as disjoint partitions of values. Every node expands a partition, which is initially a point in the feature dimension through generalization. The CFP algorithm specializes a partition by subdividing it into sub-partitions. PFP is implemented in the PCFP (Parallel Classification by Feature Partitioning) algorithm. PCFP is tested in six different domains, and results are compared with CFP of S¸irin and Guvenir [1]. feature 1 feature 2 feature k host feature node 2 partitions for feature 2 ...... .... Figure 1: Topology of the feature nodes and the host node 1 Introduction This work presents a parallel method for learni...
Contributor: The Pennsylvania State University CiteSeer Archives
Publisher: unknown
Date: 1994-02-01
Format: ps
Identifier: http://citeseer.ist.psu.edu/140035.html
Source: ftp://ftp.cs.bilkent.edu.tr/pub/tech-reports/1993/BU-CEIS-9311.ps.z
Language: en
Rights: unrestricted
<?xml version="1.0" encoding="UTF-8"?>
<references_metadata>
<rec ID="SELF" Type="SELF" CiteSeer_Book="SELF" CiteSeer_Volume="SELF" Title="Parallel Classification by Feature Partitioning" />
</references_metadata>